19-H ydroxy-5 β,19-cyclosteroids: synthesis, isomerization and ring opening

J ohn F. Templeton, ${ }^{* a}$ Yangzhi Ling, ${ }^{\text {a }}$ W eiyang Lin, ${ }^{\text {a }}$ H elena M ajgier-Baranowska ${ }^{a}$ and K irk M arat ${ }^{\text {b }}$

${ }^{\mathrm{b}}$ D epartment of Chemistry, U niversity of M anitoba, W innipeg, M anitoba, C anada R 3T 2N 2

19(R/S)-H ydroxy-5 $\mathbf{1}$,19-cyclosteroids have been synthesised from the 19-formyl 4-en-3-one by reductive cyclization with zinc in aqueous acetic acid. Treatment of the aldehyde with lithium in liquid ammonia also gave the 19(R)-hydroxy-5 β,19-cyclosteroid together with the 17β-hydroxy analogue. The 19(R)-alcohol is isomerized to the 19(S)-alcohol in either dilute acidic or basic media via the 3-hydroxy-3,5-cyclosteroid. The 19(S)-alcohol is in equilibrium with its 3-hemiketal. Treatment of the 19(R)-alcohol with methanolic H Cl gave the 19(R)- and 19(S)-methyl ethers, the 3-methyl ether 19-ketal and the 3α-methoxy-3 3 ,5 β cyclosteroid. F urther rearrangements of the 19(R)- and 19(S)-alcohols take place on more vigorous treatment with acid or base to give cyclopropanol ring-opened aldehydes including a 5p-methyl-A norsteroid. M etal hydride reduction of the 3-ketone in the 19(R)-alcohol gave only the 3β-alcohol whereas the 19(S) -alcohol gave both the 3α - and 3β-alcohols. A cid treatment of the 3β-alcohols gave products with retention of configuration at $\mathrm{C}-5$ and $\mathrm{C}-19$ while base-catalysed ring opening gave inversion at $\mathrm{C}-5$. R ing opening mainly involved breaking of the 5,19-bond, however, the 19(S)-alcohol also resulted in 10,19-bond cleavage. Structures were established by N M R measurements.

Introduction

Recently we reported the first synthesis of 19-monosubstituted derivatives of $5 \beta, 19$-cyclosteroids, namely, $19(\mathrm{R} / \mathrm{S})$-chloro$5 \beta, 19$-cycloandrostane ${ }^{1}$ and 19(R/S)-hydroxy-5 β,19-cycloandrostane. ${ }^{2}$ In this report details of the synthesis, isomerization, metal hydride reduction, and acid and base catalysed cyclopropanol ring transformations of the $19(\mathrm{R} / \mathrm{S})$-hydroxy- 5β,19cycloandrostanes are presented.

19(R/S)-H ydroxy-5ß,19-cycloandrostanes were prepared as part of our studies on mechanism-based inhibitors of the steroid enzyme, aromatase, based on their potential metabolic conversion into a reactive cyclopropane intermediate. ${ }^{3}$ A romatase inhibition or inactivation is of therapeutic importance because malignant cell growth in many female breast cancers is dependent on endogenous estrogen levels. ${ }^{4}$

The synthesis of unsubstituted $5 \beta, 19$-cyclosteroids has been reported by addition of the Simmons-Smith reagent to the steroid 5(10)-double bond, ${ }^{5}$ reduction of the 19,19-dibromo$5 \beta, 19$-cyclosteroid, ${ }^{6}$ elimination of a 19-methanesulfonate 4 -ene with hydride ion ${ }^{7}$ or a 5 -ene with pyridine ${ }^{8}$ or acetate ion, ${ }^{9}$ reductive elimination of a $\mathrm{C}-19$ sulfonate or halogen in the steroid 4-en-3-one with Li - or $\mathrm{Na}^{-\mathrm{NH}_{3}}{ }^{9-11}$ or zinc in aqueous acetic acid. ${ }^{7,12,13} \mathrm{~A}$ unique rearrangement of the steroid 19 -diethyl-[2-chloro-1,1,2-difluoroethyl]-amine derivative gave the C-1 unsaturated 5β,19-cyclosteroid. ${ }^{14}$ Treatment of the 19-methanesulfonate 1,4-dien-3-one with biphenyl in tetrahydrofuran (THF) al so gave the C-1 unsaturated $5 \beta, 19$-cyclosteroid. ${ }^{15}$

Results and discussion

19-Formylandrost-4-ene-3,17-dione 1, prepared by pyridinium dichromate oxidation of 19 -hydroxyandrost-4-ene-3,17-dione, on treatment with zinc in aqueous acetic acid gave a mixture of the $19(R / S)$-hydroxy-5 β, 19-cycloandrostane derivatives (Scheme 1). The major product was the 19(R)-alcohol 2a (62.5%) an the minor product $19(\mathrm{~S})$-alcohol 3a (0.56%), the latter obtained after chromatographic separation. The 19(S)alcohol 3a was in equilibrium with its intramolecular hemiketal
4. Theformation also of a small amount of estr-5(10)-ene-3,17dione 5 a (3.3%) was probably initiated by $\mathrm{H}_{2} \mathrm{O}$ attack on the 19aldehyde. Bond formation between carbons 5 and 19 occurs readily as shown by the facile reductive cyclizations to the 19unsubstituted $5 \beta, 19$-cyclosteroids. ${ }^{7-15}$ Radical or anion formation at $\mathrm{C}-5$, expected from treatment of the unsaturated ketone with zinc in aqueous acetic acid, locates the C -5 bonding orbital in an advantageous position to add to the 19-carbonyl group as shown in Scheme 2. Cyclization to the 19(R)-alcohol may be favoured by repulsion between the π-orbitals in ring A and the carbonyl oxygen. A cetylation or trimethylsilylation of the 19(R)- and 19(S)-alcohols, 2a and 3a/4, gave the corresponding acetates, $\mathbf{2 b}$ and $\mathbf{3 b}$, and silyl ethers, $\mathbf{2 c}$ and $\mathbf{3 c}$, respectively.

Treatment of the aldehyde $\mathbf{1}$ with lithium in ammonia gave the reductive cyclization product $\mathbf{2 a}(11 \%)$ as obtained with zinc in aqueous acetic acid together with the corresponding 17ßalcohol analogue 6a (34\%), and the 5(10)-olefin 5a (11\%) together with its 17β-alcohol analogue 5b (12\%). The 17阝alcohol $\mathbf{6 a}$ was further characterized as the diacetate $\mathbf{6 b}$.

A detailed NMR analysis has determined the conformation of ring A in the $19(R)$ - and $19(S)$-substituted derivatives. ${ }^{16} \mathrm{R}$ ing A in the 19(R)-isomers, in which a hydrogen is located over ring A, takes up a boat conformation. The 19(S)-isomers, with a larger substituent over ring A, adopt an inverted boat conformation.
The unsaturated 19 -aldehyde $\mathbf{1}$ is a vinylogous β-keto aldehyde. Reductive cyclization of the aldehyde to a cyclopropanol is comparable to cyclopropane-1,2-diol formation in the abnormal Clemmensen reduction of β-diketones. The diol has been shown to bean intermediate in the abnormal Clemmensen reduction. ${ }^{17}$ R eusch et al. ${ }^{18}$ have synthesised a number of substituted decalin cyclopropanol derivatives by an analogous intramolecular reductive cyclization.

Treatment of the 19(R)-alcohol 2a with dilute solutions of either concentrated $\mathrm{HCl}-\mathrm{THF}$ or $\mathrm{KOH}-\mathrm{MeOH}$ at $20^{\circ} \mathrm{C}$ for $1-4$ h caused isomerization to the thermodynamically more stable 19(S)-alcohol 3a/4. In this homoenolic system ${ }^{19}$ isomerization can occur through an initial 19(R)-cyclopropanol ring opening to the 3 -hydroxy-3,5-cyclosteroid followed by ring opening

Scheme 1 Reagents: i, $\mathrm{Zn}-\mathrm{HOAC}_{2} \mathrm{H}_{2} \mathrm{O}$; ii, Li-N H_{3}; iii, $\mathrm{KOH}-\mathrm{MeOH}$ or $\mathrm{HCl}-\mathrm{THF}$; iv, $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{DMAP}-\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ v, Me $\mathrm{e}_{3} \mathrm{Si}$-imidazole- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, $\mathrm{A}_{2} \mathrm{O}$-pyridine; vii, $\mathrm{Ac}_{2} \mathrm{O}$-D M AP-Et $\mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 2 Reductive cyclization of the steroid 19-formyl 4-en-3-one ($M=\mathrm{Li}, \mathrm{Zn}$)
again and reclosure to the more stable 19(S)-alcohol (see Scheme 3). A cid- and base-catalysed rearrangements of similar equilibrating cyclopropanol derivatives have been studied in detail by Reusch et al. ${ }^{20}$ Steric strain by the 19(R)-hydroxy group together with hemiketal formation shifts the equilibrium toward the 19(S)-alcohol 3a/4. Protonation of the ketone can similarly initiate the isomerization process. Treatment of the 19(R)-alcohol 2a with concentrated HCl in MeOH gave the following four products: (i) the 19(R)-methyl ether 7 (18\%), (ii) the 19(S)-methyl ether 8 (28%), (iii) the 3-methoxy ketal 9 (28%) and (iv) the 3α-methoxy- $3 \beta, 5 \beta$-cyclosteroid 10 (3%) (Scheme 4) Isolation of both the 19(R)- and 19(S)-methyl ethers, 7 and $\mathbf{8}$, demonstrates that the 19(S)- to 19(R)-alcohol isomerization occurs under the conditions in which the 3α-methoxy- $3 \beta, 5 \beta$ cyclosteroid derivative $\mathbf{1 0}$ is formed. Therefore, formation of the 3 -methoxy- $3 \beta, 5 \beta$-cyclosteroid 10 supports isomerization occurring through the 3 -hydroxy-3,5-cyclopropanol as shown in Scheme 3. The small amount of 19(S)-alcohol 3a/4 isolated from the zinc in aqueous acetic acid treatment of the 19aldehyde $\mathbf{1}$ probably results from acidic isomerization rather than direct reductive cyclization.

Treatment of the 19(S)-alcohol 3a/4 with sodium hydride and iodomethane gave the 19(S)-methyl ether 8 and the 3-methoxy ketal 9 (Scheme 4). When the 19(R)-al cohol 2a was treated with a larger excess of N aH the 4α-methyl compound 11, derivable from the product 8 above, was obtained together with the 3 methoxy ketal 9 . Isomerization of the 19(R)-alcohol $\mathbf{2 a}$ to the 19(S)-alcohol 3a/4 occurs rapidly under the reaction conditions

3-hydroxy-3,5-cyclosteroid

19(S)-alcohol

Scheme 3 Isomerization of 19(R)- and 19(S)-hydroxy-5,19-cyclosteroids
as only derivatives of the $19(\mathrm{~S})$-isomer were isolated. Formation of 4α-methyl compound 11 established that enolization occurred towards C-4 and that stereoelectronic requirements permit methylation to occur at that position, probably from the less hindered α-face, more readily than at C-2.
M ore vigorous acidic or basic treatment of the 19(R)-alcohol 2a led to further rearrangement products (Scheme 4). When the 19(R)-alcohol 2a was heated under reflux with toluenepsulfonic acid in benzene the major product was the 5β -androstan-19-al 12 together with the unstable 5β-methyl-Anorsteroid aldehyde 13. U nder these acidic conditions protonation of the cyclopropanol 5,19-bond led to the aldehyde 12. The A -norsteroid $\mathbf{1 3}$ can be formed by ring opening through β-face protonation of the 3,4-bond in the intermediate 3-hydroxy-3,5cyclosteroid (see Scheme 3). The 19(R)-alcohol 2a under reflux with $\mathrm{KOH}-\mathrm{M} \mathrm{eOH}$ gave the A-norsteroid $\mathbf{1 3}$ as the major product; however, because it proved to be unstable the reaction mixture was treated directly with sodium borohydride to give the corresponding C-19 alcohol 14.
M etal hydride reduction of the C-3 carbonyl group was carried out on the 19(R)- and 19(S)-alcohols, 2a and 3a/4, to determine the effect of the cyclopropanol ring on the stereochemistry of reduction to the $\mathrm{C}-3$ alcohols. These alcohols were

7

8

9

10

Me
11

Scheme 4 Reagents: i, HCl-M eOH ; ii, NaH-M el-D M F; iii, p-TsOH benzene; iv, $0.5 \mathrm{~m} \mathrm{KOH}-\mathrm{MeOH} ; \mathrm{v}, \mathrm{NaBH}_{4}$
then employed to examine the course of the cyclopropanol ring opening in the absence of the carbonyl group. Lithium tri-tertbutoxyaluminium hydride (LTBAH) reduction of the 19(R)alcohol 2a gave the 19(R)-diolone 6a (44\%) and the 19(R)-triol 15 (35\%) (Scheme 5). The C-3 ketone was resistant to β-face attack by the reagent, probably because of steric hindrance from the 19-H. Furthermore α-face attack was relatively slow compared with reduction of the $\mathrm{C}-17$ ketone Similar treatment of the 19(S)-alcohol 3a/4 gave the 19(S)-diolone 16a/17 further characterized as the diacetate 16b (Scheme 5). Resistance of the C-3 ketone to reduction may result from intramolecular hemiketal formation with the 19-hydroxy group. Treatment of the 19(R)-alcohol 2a with sodium borohydride gave only the 19(R)-triol 15. Similar sodium borohydride treatment of the 19(S)-alcohol 3a/4 gave two epimeric alcohols, the 19(S)-triols 18 (62%) and 19 (12%). While the 3β-hydroxy group in the 19(S)-triol 18 is formed by α-face attack of the reagent on the less sterically hindered face of the molecule the 3α-hydroxy group in the 19(S)-triol 19 requires attack on the moresterically hindered β-face. β-Face attack may occur either directly on the

Scheme 5 Reagents: i, LTBAH-THF; ii, $\mathrm{NaBH}_{4} \mathrm{MeOH}$; iii, $\mathrm{Ac}_{2} \mathrm{O}-$ pyridine
ketone or by an initial reaction of the reagent with the C-19 alcohol followed by intramolecular reduction. Attempts to purify the 19(S)-triol 19 led to its decomposition whereas the 19(S)-triol 18 proved to be more stable. The greater stability of the 19(S)-triol 18 may result from hydrogen bonding between the $\mathrm{C}-3$ and $\mathrm{C}-19$ alcohols not possible with the 19(S)-triol 19.
Treatment of the triols $\mathbf{1 5}$ and $\mathbf{1 8}$ (Scheme 6) obtained from reduction of the $19(\mathrm{R} / \mathrm{S})$-alcohols, 2a and 3a/4, respectively, under acidic or basic conditions gave no A-norsteroid derivable from a 3 -hydroxy-3,5-cyclosteroid (Scheme 3). Since this intermediate requires the C-3 ketone, it is not possible to form with the C-3 alcohols and, therefore, the absence of an A-norsteroid is consistent with its formation through a 3 -hydroxy-3,5cyclosteroid. Treatment of the $19(\mathrm{R})$-triol 15 with $\mathrm{KOH}-$ M eOH under reflux for 24 h gave the $5 \alpha, 19 \beta$-aldehyde 20 which was directly reduced with sodium borohydride to the more stable alcohol 21 (Scheme 6). Similar base treatment of the 19(R)-alcohol 2a gave the A-norsteroid $\mathbf{1 3}$ (Scheme 4). When the $19(\mathrm{R})$-triol 15 was treated with HCl -THF for 24 h the unstable $5 \beta, 19 \beta$-aldehyde 22 obtained was directly reduced with sodium borohydride to the corresponding alcohol 23. Treatment of the 19(S)-triol 18 with KOH-M eOH gave the unstable isomeric aldehydes $\mathbf{2 0}$ and $\mathbf{2 4}$ which were immediately reduced to the isomeric hydroxymethyl alcohols, 21 and 25.
The 19(R)-alcohol 15 on $\mathrm{KOH}-\mathrm{MeOH}$ treatment (24 h reflux) gave the C-5 inversion product $20 / 21\left(10 \beta-\mathrm{CH}_{2} \mathrm{OH} / 5 \alpha-\right.$ H) in 48% yield. Similar treatment (72 h reflux) of the 19(S)alcohol $\mathbf{1 8}$ gave not only $\mathbf{2 0 / 2 1}$ in 30% yield but also the 10β-H/ $5 \beta-\mathrm{CH}_{2} \mathrm{OH}$ product 24/25 isolated in 15% yield.
Gibson and De Puy ${ }^{21}$ have reviewed the ring opening of cyclopropanols under both acidic and basic conditions. G enerally under acidic conditions cyclopropanol ring opening proceeds with retention of configuration while under basic conditions ring opening results in inversion. In agreement with their conclusion the 19(R)-triol $\mathbf{1 5}$ under acidic conditions retained

Scheme 6 Reagents and conditions: i. 0.5 м KOH-M eOH, 24-72 h; ii, $\mathrm{NaBH}_{4}-\mathrm{MeOH}$; iii, $\mathrm{HCl}-\mathrm{THF}, 24 \mathrm{~h}$
the 5β stereochemistry while under basic conditions C-5 inversion occurred (Scheme 6). Inversion also occurred on base treatment of the 19(S)-triol 18. Under acidic conditions ring opening following protonation of the cyclopropanol retained the 5β stereochemistry giving a mixture of 5,19 - and 10,19 cyclopropane ring-opened products. Formation of an intermediate homoenolate anion, under basic conditions, can result in inversion at C-5 consistent with the observed stereochemistry. Inversion at C-5 leads to the thermodynamically more stable trans ring junction.

Trimethylsilylation of the saturated dione $\mathbf{2 b}$ gave a mixture of the 2- and 3 -enol silyl ethers $\mathbf{6 a}$ ($\mathrm{H}-2 / 4,6.1: 1$) which was treated with $\mathrm{Pd}(\mathrm{OAC})_{2}$ (1.2 equiv.) to give the unsaturated ketone 27a. Similar treatment of the isomeric saturated dione $\mathbf{3 b}$ also gave a mixture of the 2 - and 3 -enol silyl ethers $\mathbf{2 6 b}$ (H$2 / 4,2.3: 1$), but in a different ratio. Treatment of the enol silyl ethers with $\mathrm{Pd}(\mathrm{OAc})_{2}$ gave the unsaturated ketone 27b. 5β,19-

Scheme 7 Reagents: i, TMSOTf-Pri${ }_{2} \mathrm{EtN}$ or $\mathrm{Et}_{3} \mathrm{~N}$; ii, $\mathrm{Pd}(\mathrm{OAC})_{2}$ M eCN

Cycloandrost-1-ene-3,17-dione $\mathbf{2 8}$ was prepared as previously reported for NMR comparison. ${ }^{14}$ Attempts to hydrolyse these unsaturated esters to the 19-alcohol analogues were unsuccessful.

Nuclear magnetic resonance analysis

COSY and HSQC spectra were used for a complete assignment of the carbon and proton spectra of compounds $\mathbf{2 a}, \mathbf{2 b}, \mathbf{3 b}, \mathbf{6}$, 9-15, 18, 19, 21, 23, 25 (see Tables 1 and 2). Spectra for compounds $\mathbf{2 c}, 3 \mathrm{a} / 4,3 \mathrm{c}, 5 \mathrm{a}, 5 \mathrm{~b}, 6 \mathrm{a}, 6 \mathrm{~b}, 7,8,16 \mathrm{a} / 17,16 \mathrm{~b}, 20$ and 22 were assigned by comparison with their analogues above and with literature values. ${ }^{22}$
Irradiation of the cyclopropyl proton (19-H) in the 19(R)alcohol 2 a resulted in N OEs to the $1 \beta-\mathrm{H}(3.2 \%), 2 \beta-\mathrm{H}(2.4 \%)$ and $4 \beta-\mathrm{H}(4.1 \%)$. In the $19(\mathrm{R})$-acetate $\mathbf{2 b}$ irradiation gave NOEs with the $1 \beta-\mathrm{H}(3.0 \%), 2 \beta-\mathrm{H}(4.5 \%)$ and $4 \beta-\mathrm{H}(2.3 \%)$. Four-bond couplings ($\int<1 \mathrm{~Hz}$) between the 19-H and the $9-\mathrm{H}$ were observed in the COSY spectrum in both compounds. These data clearly demonstrate that the $19-\mathrm{H}$ is located over ring A and also serves to identify the β hydrogens in ring A.

Irradiation of the $19-\mathrm{H}$ in the $19(\mathrm{~S})$-acetate $\mathbf{3 b}$ revealed NOEs to the $7 \beta-\mathrm{H}(1.4 \%)$, the $8-\mathrm{H}(11.8 \%)$ and the $6 \beta-\mathrm{H}$ (2.1%), demonstrating that the $19-\mathrm{H}$ is located over ring B and identifying the β hydrogens in ring B.
The ${ }^{1} \mathrm{H}$ N M R spectrum of the ketone/hemiketal mixture 3a/4 in [${ }^{2} \mathrm{H}_{6}$]acetone showed signals assigned to the 19(R)-H at 3.31 and $3.60 \mathrm{ppm}(2.5: 1)$ corresponding to the 19(S)-alcohol 3a and hemiketal 4, respectively. Two $10-\mathrm{M}$ e signals (the stronger at 0.89 and weaker at 0.86 ppm) were also present. Two carbonyls, 212.29 and 219.28 corresponding to the $\mathrm{C}-3$ and $\mathrm{C}-17$ carbonyl groups, respectively, were observed in the ${ }^{13} \mathrm{C}$ N M R spectrum.
The structures of compounds 7 and 8 were assigned by comparison with the corresponding acetates 2 b and $\mathbf{3 b}$. The structure of compound $\mathbf{1 0}$ was consistent with the complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments obtained from the 2D measurements.

Examination of rows extracted from the HSQC spectrum of compound $\mathbf{1 0}$ showed that both the $6 \alpha-\mathrm{H}$ and $6 \beta-\mathrm{H}$ lacked the expected coupling to the $5-\mathrm{H}$ and that the $2 \alpha-\mathrm{H}$ and $2 \beta-\mathrm{H}$ lacked any couplings to protons attached to $\mathrm{C}-3$, implying that $\mathrm{C}-3$ and C-5 must be quaternary. A n isolated highfield doublet of doublets ($\mathrm{H}-4 \alpha$), 0.32 ppm , ($\mathrm{J}=1.5,5.4 \mathrm{~Hz}$) coupled to a doublet at $0.84 \mathrm{ppm}(4 \beta-\mathrm{H})$ and to the $2 \alpha-\mathrm{H}$ was also observed. These data strongly suggest a 3,5 -cyclosteroid structure. I rradiation of the $19-\mathrm{H}$ resulted in NOEs to the $1 \beta-\mathrm{H}(1.3 \%)$ and to the lowfield cyclopropyl proton (3.5\%). The latter N OE identifies this as the endo cyclopropyl proton (4β - H). Irradiation of the exo cyclopropyl proton ($4 \alpha-\mathrm{H}$) resulted in NOEs to, the $6 \alpha-\mathrm{H}(4.1 \%)$ and the C-4 methoxy group (2.4\%). Irradiation of the C-3 methoxy group resulted in an NOE to the $4 \alpha-\mathrm{H}$ (2.0%). These data are only consistent with the proposed $3 \beta, 5 \beta$-cyclosteroid 10.
Irradiation of the $19-\mathrm{H}$ in the 4α-methyl derivative 11 showed N OE with the $7 \beta-\mathrm{H}(5.1 \%)$ and $8-\mathrm{H}(11 \%)$. Therefore the $19-\mathrm{H}$ must be located over ring B. Irradiation of the 19-methoxy protons revealed NOEs to the $4-\mathrm{H}(2.5 \%)$. The NOE between the 19-methoxy group and the $4-\mathrm{H}$ is consistent with the 4α-methyl stereochemistry.
Examination of the $4 \alpha-\mathrm{H}, 4 \beta-\mathrm{H}$ and $5-\mathrm{H}$ multiplets in the aldehyde $\mathbf{1 2}$ clearly showed that the $5-\mathrm{H}$ is axial to ring A but equatorial to ring B (no axial coupling with the C-6 protons), as required for 5β stereochemistry. Irradiation of the aldehyde peak (19-H) resulted in an N OE to both the $5-\mathrm{H}(4.1 \%)$ and the $1 \beta-\mathrm{H}(1.5 \%)$. I rradiation of the $4 \alpha-\mathrm{H}$ resulted in an NOE to the $7 \alpha-\mathrm{H}(5.6 \%)$ an the $9-\mathrm{H}(5.7 \%)$. These results are in agreement with the 5β structure $\mathbf{1 2}$ proposed.

Irradiation of the 5-methyl group in the A-norsteroid 14 revealed NOEs to the high field 19-proton (4.0\%), the $6 \beta-\mathrm{H}$ (3.2\%) and the $1 \beta-\mathrm{H}(4.9 \%)$. Irradiation of the highfield $19-$

Table $1{ }^{1} \mathrm{H}$ NMR chemical shift（J in Hz$)^{\text {a }}$

Compd．	$13-\mathrm{Me}$	19－H	Other
$2 a^{\text {b，c }}$	0.90	3.30	0.80 （m， $7 \alpha-H), 2.31 d(4 \beta-H), 2.49 \mathrm{~d}(4 \alpha-H), J_{\text {AB }} 17.3$
$2 b^{\text {b，c }}$	0.91	4.03	2.14 （s，OA C），2．50d ${ }^{\text {d }}(4 \alpha-H), 2.55 \mathrm{~d}^{\mathrm{d}}(4 \beta-H) \mathrm{J}_{\text {AB }} 17.7$
2c	0.87	3.12	0.16 （s，SiM e ${ }_{3}$ ），2．31d（ $4 \beta-\mathrm{H}$ ），2．50d（ $4 \alpha-\mathrm{H}$ ）J AB 16.7
$3 \mathrm{~b}^{\text {b，}}$	0.92	3.88	2.09 （m，16 $\alpha-\mathrm{H}$ ）， 2.08 （s，OA c），2．25d（ $4 \beta-\mathrm{H}$ ）， $2.38 \mathrm{~d}(4 \alpha-\mathrm{H}), \mathrm{J}_{\text {AB }} 16.5$
$3 c^{\text {c }}$	0.92	3.15	0.17 （s，SiM e3 ）， 0.73 （m，7 $\alpha-\mathrm{H}$ ），2．09d（ $4 \beta-\mathrm{H}$ ），2．53d（ $4 \alpha-\mathrm{H}$ ） $\mathrm{J}_{\text {AB }} 16.3$
$6 \mathrm{a}^{\text {b，e，f }}$	0.77	3.21	2.22 （m，2 $\beta-\mathrm{H}$ ），2．34d（ $4 \beta-\mathrm{H}$ ），2．49d（ $4 \alpha-\mathrm{H}$ ） $\mathrm{J}_{\text {AB }} 17.0$
6b	0.82	4.00	2.04 （s，17－OA c）， 2.14 （s，19－OA c），3．48d ${ }^{\text {d }}(4 \alpha-H), 2.55 d^{\text {d }}(4 \beta-H) \mathrm{J}_{\text {AB }} 17.9,4.63$（dd，J 7．8，9．0）（17 $\alpha-\mathrm{H}$ ）
$7{ }^{\text {c }}$	0.90	2.86	$0.81(\mathrm{~m}, 7 \alpha-\mathrm{H}), 2.38 \mathrm{~d}(4 \beta-\mathrm{H}), 2.53 \mathrm{~d}(4 \alpha-\mathrm{H}) \mathrm{J}_{\text {AB }} 17.1,3.38$（s，19－M eO）
$8{ }^{\text {c }}$	0.92	2.93	0.72 （m， $7 \alpha-H), 2.25 d(4 \beta-H), 2.53 \mathrm{~d}(4 \alpha-H) \mathrm{J}_{\text {AB }} 16.3,3.34(\mathrm{~s}, 19-\mathrm{M} \mathrm{eO})$
9 mb	0.86	3.61	3.33 （s，3－M e0）
$10^{\mathrm{b}, \mathrm{g}}$	0.89	4.11	0.32 （dd，J 1．7，5．4，4阝－H ）， 0.84 （d，J 5．4，4 α－H ）， 3.27 （s，3－M eO），3．45， 3.48 ［s，19－（M eO）${ }_{2} \mathrm{CH}$ ］
$11^{\text {b，c }}$	0.91	2.97	0.66 （m，7 $\alpha-\mathrm{H}$ ），1．12（d，J 6．6，4 $\alpha-\mathrm{M} \mathrm{e}$ ），2．27d，2．29d， $2-\mathrm{H}_{2}$ ）， 2.61 （q，J 6．7，43－H）， 3.37 （s，19－M eO）
$12^{\text {b，c }}$	0.98	9.63	2.65 （dd，J 13．7，14．6，4 α－H）
13	$0.88{ }^{\text {d }}$	9.94	$0.90^{\text {d }}$（s，5－M e）
$14^{\text {b，eff }}$	0.80	$3.73 \mathrm{~d}, 3.81 \mathrm{~d}^{\text {J }} \mathrm{AB} 11.5$	1.02 （s，5 $3-\mathrm{Me}$ ）， 2.27 （m，2－ H_{2} ）
$15^{\text {b．f．}}$ h	0.73	3.11	2.15 （m，1 $\beta-\mathrm{H}$ ）， 3.50 （m，3 $\alpha-\mathrm{H}$ ）
$16 \mathrm{~b}^{\text {e }}$	0.83	3.87	2．04， 2.07 （s，17－OA c，19－OA c），2．25d（4ß－H），2．40d，（ $4 \alpha-\mathrm{H}$ ），J AB $16.4,4.62$（t，J $8.3,17 \alpha-H)$
$18^{\text {b．f．h }}$	0.73	3.11	3.69 （m，3 $\alpha-\mathrm{H})^{\text {j }}$
$19^{\text {b，f，}}$	0.73	2.97	1.30 （dd，J 8．1，13．0，4－axial－H ）， 1.95 （m，16 α－H ）， 2.20 （dd，J 5．0，13．2，4－equatorial－H ）， 3.57 （m，3 β－H ）${ }^{\text {j }}$
$20^{\text {f，}} \mathrm{h}$	0.65	10.0	2.38 （dt，J 3．4，13．4，1 β－H ）， 3.55 （m，3 β ）${ }^{\text {j }}$
$21^{\text {b，f，}}$	0.77	$3.74 \mathrm{~d}, 3.86 \mathrm{~d}, \mathrm{~J}_{\text {AB }} 11.7$	2.30 （dt，J 3．4，13．4，1 $\beta-\mathrm{H}$ ）， $3.54(\mathrm{~m}, 3 \beta-\mathrm{H})^{\mathrm{j}}$
$22^{\text {f，}}$	0.79	9.58	2.31 （m，5 $\beta-\mathrm{H}$ ）， 4.05 （br s，33－H）
$23^{\text {b，f，}}$	0.71	$3.45 \mathrm{~d}, 3.85 \mathrm{~d}, \mathrm{~J}_{\text {AB }} 11.1$	2.19 （m，5 $\beta-\mathrm{H}$ ）， 4.01 （br s， $3 \beta-\mathrm{H}$ ）
$25^{\text {b，f，}}$	0.73	$3.40 \mathrm{~d}, 3.91 \mathrm{~d}, \mathrm{~J}_{\mathrm{AB}} 11.2^{\text {i }}$	4.03 （br s，3阝－H）
27a	0.87	3.64	2.19 （s，19－COM e）， 2.45 （d，J 18．6，4 3 －H ）， 2.83 （d，J 18．6， $4 \alpha-\mathrm{H}$ ）， 5.80 （d，J 10．2，1－H ）， 7.14 （d，10．2，2－H ）
27b	0.95	3.94	1.90 （s，19－COM e）， 2.34 （d，J 18．4，4阝－H ）， 2.77 （d，J 18．4， $4 \alpha-\mathrm{H}$ ）， 5.97 （d，J 10．2，1－H ）， 6.77 （d，J 10．2，2－H ）
$28{ }^{\text {b }}$	0.90	$0.35 d, 1.16 d, J_{\text {AB }} 4.3$	$2.50 \mathrm{~d}(4 \alpha-\mathrm{H}), 2.87 \mathrm{~d}(4 \beta-\mathrm{H}), \mathrm{J}_{\text {AB }} 18.4,5.76$（d，J 10．2，1－H ）， 7.28 （d，J 10．2，2－H）

${ }^{\text {a }}$ For solutions in CDCl_{3}（residual CHCl_{3} peak $\delta 7.26$ as internal standard）on a Bruker AM 300 instrument unless otherwise indicated．J Values are given in Hz ．${ }^{\text {b }}$ D etermined by 2－D analysis on a Bruker A M X 500 instrument．${ }^{\mathrm{c}} \sim 2.45$（dd，J $\sim 8.4,19.3,16 \beta-\mathrm{H}$ ）．${ }^{\text {d }}$ Interchangeable．${ }^{e} \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$ $(1: 1) .{ }^{\mathrm{f}} \sim 3.57(\mathrm{t}, \mathrm{J} \sim 8.5,17 \alpha-\mathrm{H}) .{ }^{9} \mathrm{CD}_{3} \mathrm{COCD}_{3}{ }^{\mathrm{h}} \mathrm{CD}_{3} \mathrm{OD} .{ }^{\mathrm{i}} 5 \beta-\mathrm{CH}_{2} \mathrm{OH} . .^{\mathrm{j}}$ Overlapping with the $17 \alpha-\mathrm{H}$.
proton showed NOEs to the $1 \beta-\mathrm{H}(5.4 \%)$ ，the 5 －methyl group （ 7.3% ）and the 13 －methyl group（ 1.8% ）whereas irradiation of the lowfield $19-$ proton gave an NOE with the $11 \beta-\mathrm{H}(6.3 \%)$ ． These N OE effects are consistent with a β orientation for both the $19-\mathrm{CH}_{2} \mathrm{OH}$ and the 5 －methyl group in compound 14 ．

The structure of the diolone $6 \mathbf{a}$ is based on the agreement of its carbon and proton spectra with those observed for the 19（R）－alcohol 2a and published values．${ }^{22}$

The presence of NOEs in the triol $\mathbf{1 5}$ between the 19－H and the $1 \beta-\mathrm{H}(1.7 \%)$ ，the $2 \beta-\mathrm{H}(6.5 \%)$ and the $4 \beta-\mathrm{H}(4.8 \%)$ estab－ lishes that the $19-\mathrm{H}$ is located over ring A．From the coupling constants it is clear that the $1 \beta-\mathrm{H}$ is equatorial while the $2 \beta-\mathrm{H}$ and the $4 \beta-\mathrm{H}$ are axial（ $\mathrm{J} 6.2,6.2$ and 13.0 Hz ）．Because the 3 － proton shows axial couplings to the $2 \beta-\mathrm{H}(\mathrm{J} 12.0 \mathrm{~Hz}$ ）and the $4 \alpha-\mathrm{H}(\mathrm{J} 10.3 \mathrm{~Hz})$ the $3-\mathrm{H}$ must be α and the 3 －alcohol β ．N OE effects consistent with this assignment were al so observed from the $3-\mathrm{H}$ to the $1 \alpha-\mathrm{H}(2.3 \%)$ ，the $4 \alpha-\mathrm{H}(4.8 \%)$ and the $4 \beta-\mathrm{H}$ （2．6\％）and from the $1 \beta-\mathrm{H}$ to the $1 \alpha-\mathrm{H}(16 \%)$ ，the $2 \beta-\mathrm{H}(2.1 \%)$ ， the $11 \alpha-\mathrm{H}(3.7 \%)$ and the $19-\mathrm{H}(3.6 \%)$ ．

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 6 a} / \mathbf{1 7}$ were indicative of a ketone／hemiketal mixture like 3a／4 and the com－ pound was characterized as the diacetate 16b which showed proton and carbon spectra in agreement with the 19（S）－acetate 3b．

The triol 18 showed N OE s from the 19－H to the $6 \beta-\mathrm{H}$（2．3\％）， the $7 \beta-\mathrm{H}(1 \%)$ and the $8-\mathrm{H}(10.6 \%)$ confirming that the $19-\mathrm{H}$ is located over ring B．Although it is clear from the multiplet structure of the $3-\mathrm{H}$ that the 3 －hydroxy group must be axial with the $3-\mathrm{H}$ equatorial，conformational possibilities in ring A preclude an unambiguous assignment of the C－3 stereo－ chemistry．H owever，based on the assignment of the 3α－alcohol configuration to compound 19 （see below），obtained from the same reaction mixture，the triol $\mathbf{1 8}$ is assigned to the 3β－alcohol． F urthermore，on acid treatment compound 18 gave the same ring－opened product $\mathbf{2 3}$ obtained from the triol $\mathbf{1 5}$ hence con－ firming the $3 \beta-\mathrm{OH}$ configuration．

The stereochemistry at C －19 in compound 19 was determined from N OEs observed from the $19-\mathrm{H}$ to the $6 \beta-\mathrm{H}$（3．2\％），the $7 \beta-\mathrm{H}(1.2 \%)$ and the $8-\mathrm{H}(10 \%)$ ．A small NOE of 0.5% was
also observed to the equatorial 4－proton，suggesting that the $4 \alpha-\mathrm{H}$ must be axial．Further N OE s were obtained from the $3-\mathrm{H}$ to the $4 \beta-\mathrm{H}(4.8 \%)$ and the axial 1－proton（ 3.8% ）and from the $4 \beta-\mathrm{H}$ to the $3-\mathrm{H}(5.1 \%)$ and the equatorial 2 －proton（3．0\％）． These data are consistent only with a $2 \alpha, 3 \alpha$－half chair con－ formation with the $1 \beta-\mathrm{H}, 2 \alpha-\mathrm{H}$ and $4 \alpha-\mathrm{H}(\mathrm{J} 8.0 \mathrm{~Hz}$ ）to the $3-\mathrm{H}$ and it follows that the 3 － H is β and therefore the 3 －hydroxy group is α ．

In compound $\mathbf{2 1}$ the $5-\mathrm{H}$ was observed to have axial coup－ lings to both the $6 \beta-\mathrm{H}$ and the $4 \beta-\mathrm{H}$ ，consistent only with α stereochemistry at $\mathrm{C}-5$ ．Irradiation of the lowfield 19－proton resulted in NOEs to the $8-\mathrm{H}$（ 10% ），while irradiation of the highfield 19 －proton resulted in NOEs to the $2 \beta-\mathrm{H}(5.2 \%), 4 \beta-\mathrm{H}$ （7．8\％）．These data imply β stereochemistry at C－10．Consistent with a normal chair conformation for ring A in a 5α－steroid，${ }^{22}$ both the $2 \beta-H$ and the $4 \beta-H$ are observed to be axial．Because the 3－proton is also axial with couplings of 11.2 and 12.2 Hz to the $2 \beta-\mathrm{H}$ and $4 \beta-\mathrm{H}$ ，respectively，the 3 －hydroxy group is β ．
In compound 23，irradiation of the lowfield 19－proton resulted in NOEs to the $5-\mathrm{H}(2.2 \%)$ ，the $6 \beta-\mathrm{H}(3.6 \%)$ the $8-\mathrm{H}$ （7．2\％），in agreement with β stereochemistry at both C－10 and $\mathrm{C}-5$ ．Irradiation of the $5-\mathrm{H}$ resulted in NOEs to the $4 \beta-\mathrm{H}$ （2．5\％），the $6 \alpha-\mathrm{H}(1.6 \%)$ ，the $6 \beta-\mathrm{H}(5.2 \%)$ and to the lowfield 19－ proton（1\％），confirming the above conclusion．Irradiation of the highfield 19－proton resulted in an NOE to the $11 \beta-\mathrm{H}$ （6．7\％）．An axial coupling was observed between the $5-\mathrm{H}$ and the $4 \alpha-\mathrm{H}$（J 13.2 Hz ），while axial－equatorial couplings were observed between the $4 \alpha-\mathrm{H}$ and the $3-\mathrm{H}(\mathrm{J} 4.1 \mathrm{~Hz}$ ）and between the $3-\mathrm{H}$ and the $2 \alpha-\mathrm{H}(\mathrm{J} \sim 3.5 \mathrm{~Hz}$ ）．Therefore，the $\mathrm{C}-3$ hydroxy group must have β stereochemistry．The ${ }^{13} \mathrm{C}$ chemical shifts for ring A and B in compounds $\mathbf{2 2}$ and $\mathbf{2 3}$ are consistent with the stereochemistry assigned at C－5 and C－10．${ }^{22}$

In compound $\mathbf{2 5}$ ，from examination of the $1 \alpha-\mathrm{H}, 1 \beta-\mathrm{H}$ and $10-\mathrm{H}$ multiplets extracted from the HSQC spectrum，it is clear that the $10-\mathrm{H}$ is axial to ring B but equatorial to ring A ．I rradi－ ation of thehighfield 5 －hydroxymethyl proton resulted in N OEs to the $1 \beta-\mathrm{H}(1.3 \%)$ ，the $6 \alpha-\mathrm{H}(3.9 \%)$ ，the $10-\mathrm{H}(0.8 \%)$ ．I rradi－ ation of the lowfield 5 －hydroxymethyl proton resulted in N OEs to the $1 \beta-\mathrm{H}(3.4 \%)$ and the $10-\mathrm{H}(3.0 \%)$ ．These data establish

Table $2{ }^{13} \mathrm{C}$ N M R chemical shifts ${ }^{\text {a }}$

Carbon	Compound													
	$2 a^{\text {b }}$	$2 b^{\text {b }}$	$2 c^{\text {c }}$	$3 b^{\text {b,d }}$	$3 c^{\text {c }}$	$6 a^{\text {b,e }}$	$6 b^{\text {f }}$	7	8	$9{ }^{\text {b }}$	$10^{\text {b.g }}$	$11^{\text {b }}$	$12^{\text {b }}$	13
1	27.61	22.47	27.31	23.12	20.88	28.05	27.49^{1}	27.83	20.98	23.59	27.68	20.16	28.31	22.70
2	36.28	36.41	36.41	36.37	36.16	36.64	36.26	36.25	35.94	30.31	28.25	35.63	35.39	32.56
3	212.31	210.59	212.38	212.02	214.01	215.17	210.87	212.17	213.12	105.45	72.05	214.66	209.72	218.16^{1}
4	47.89	47.20	48.21	43.10	42.86	48.43	47.27	48.09	42.55	36.69	18.72	40.56	41.49	
5	21.19	21.14	20.75	24.44	23.24	21.02^{1}	21.01	20.86^{1}	23.97	24.66	$37.68{ }^{\prime}$	27.89	37.62	$53.05{ }^{\text {m }}$
6	25.71	26.60^{1}	26.31	31.68	31.59	25.95	$26.52{ }^{1}$	26.05	31.49	25.38	27.21	24.83	27.38	30.21
7	26.23	25.87^{1}	26.40	25.70	26.08	27.33	27.52^{1}	36.30	25.96	25.97	30.57	26.03	24.58	26.80
8	36.83	36.82	36.73	35.79	36.06	37.33	36.95	36.64	35.94	35.93	$36.89{ }^{\prime}$	35.81	35.78	35.68
9	46.47	46.32	46.54	45.53	47.80	46.77	46.17	46.52	44.50	45.16	49.35	44.58	39.92	45.73
10	25.33	24.75	24.61	27.92	28.77	$25.64{ }^{\text {1 }}$	24.79	$25.56{ }^{1}$	29.31	25.97	52.26	30.72	50.36	$58.82{ }^{\text {m }}$
11	24.23	23.79	23.42	24.10	24.65	24.62	24.04	24.23	24.59	24.66	23.81	24.71	20.59	20.97
12	32.20	31.97	32.13	31.48	32.17	37.64	37.25	32.16	32.09	31.30	33.48	31.54	31.81	31.66
13	48.68	48.45	48.67	48.26	48.22	44.12	43.47	48.61	48.20	47.94	48.31	48.28	47.80	47.57
14	51.16	50.92	51.07	50.26	50.26	51.10	50.28	51.00	50.25	50.43	53.26	50.30	51.44	51.19
15	21.62	21.62	21.54	21.55	21.55	23.37	23.29	21.62	21.50	21.65	22.38	21.51	21.68	21.51
16	35.63	35.74	35.81	35.73	35.73	30.13	$26.65{ }^{\text {' }}$	35.82	35.67	35.69	36.10	35.72	35.78	35.68
17	221.22	220.40	221.22	220.36	220.36	81.68	82.48	221.14	220.22	220.58	217.80	220.27	220.41	219.89 ${ }^{1}$
18	14.35	14.11	14.08	14.14	14.14	11.55	12.27	14.25	14.12	13.90	14.33	14.14	13.71	13.78
19	63.40	64.21	64.05	62.13	60.37	63.58	64.20	71.83	68.39	65.60		69.09	204.51	204.80
3-M e										50.14				
19-OM e	$\begin{aligned} & 58.27 \\ & 58.98 \end{aligned}$						58.66	58.66	58.20		58.27	58.41		
$\begin{aligned} & 4-\mathrm{Me} \\ & 5-\mathrm{Me} \end{aligned}$												10.18		21.22
Carbon	Compound													
	$14^{\text {b,e }}$	$15^{\text {b,h }}$	$16{ }^{\text {i }}$	$18^{\text {b,h }}$	$19^{\text {b,h }}$	$20^{\text {h }}$	$21^{\text {b,h }}$	$22^{\text {h }}$	$23^{\text {b,h }}$	$25^{\text {b,h }}$	27a ${ }^{\text {j }}$	27b ${ }^{\text {k }}$	$28^{\text {b }}$	
1	23.94	30.54	23.22	25.58	24.91	32.11	32.50	22.47	24.37	18.05	152.21	145.00	156.18	
2	33.37	31.03	36.46	30.96	32.73	32.69	32.67	29.13	28.18	27.17	129.99	127.14	124.37	
3	224.22	68.32	212.16	67.01	68.23	71.14	71.78	66.52	67.58	67.89	195.26	195.21	196.69	
4		45.55	43.17	38.32	40.24	40.48	39.30	33.42	34.27	34.93	41.92	40.42	44.90	
5	$53.89{ }^{1}$	23.09	24.41	23.08	25.13	44.77	46.55	30.93	30.13	39.09	23.52	24.69	21.81	
6	30.82	30.30	31.77	36.22	35.78	29.43	29.37	27.04	27.29	35.79	26.70	$31.36{ }^{1}$	32.66	
7	27.80	28.78	26.38	28.05	27.74	33.24	32.96	26.95	26.71	27.38	24.97	24.95	25.10	
8	36.63	38.57	35.90	37.82	37.79	38.30	37.32	37.89	36.91	42.42	36.76	36.24	35.81	
9	46.87	52.53	45.37	50.22	50.13	53.95	56.62	39.76	40.98	40.64	43.85	44.16	44.09	
10	$42.98{ }^{1}$	26.77	27.90	27.59	27.43	52.91	40.35	37.89	40.53	41.69	27.76	30.89	27.95	
11	22.48	25.43	24.36	23.31	25.55	22.53	23.51	21.90	21.78	27.17	23.39	23.96	24.73	
12	37.13	38.79	36.78	38.08	38.12	37.88	38.67	38.26	38.55	38.15	31.73	$31.45{ }^{1}$	31.46	
13	48.14	44.97	43.22	44.71	44.78	43.91	44.25	44.18	44.17	44.03	48.33	48.33	48.27	
14	52.01	52.26	49.61	51.21	51.21	52.44	52.83	52.36	52.93	51.56	50.64	50.28	49.94	
15	23.11	24.22	23.22	24.05	24.04	24.16	24.34	24.25	24.27	24.14	21.47	21.56	21.60	
16	30.00	30.78	27.48	30.66	30.66	30.56	30.66	30.69	30.72	30.71	35.57	35.66	35.70	
17	81.41	82.62	82.49	82.47	82.49	82.30	82.55	82.39	82.49	82.64	219.86	219.90	220.18	
18	11.27	12.05	12.33	11.86	11.85	11.51	11.87	11.51	11.67	11.60	14.00	14.21	14.12	
$\begin{aligned} & 19 \\ & 3-\mathrm{OM} \mathrm{e} \end{aligned}$	64.18	64.54	62.19	60.61	60.73	210.43	60.68	208.31	66.17	71.56	70.12	61.25	31.31	
$19-0 \mathrm{Me}$														
$\begin{aligned} & 4-\mathrm{Me} \\ & 5-\mathrm{M} \mathrm{e} \end{aligned}$	21.32													

${ }^{\text {a }}$ For solution in CDCl_{3} (residual CHCl_{3} peak at $\delta_{\mathrm{c}} 77.0$ internal standard) unless otherwise indicated on a Bruker AM 300 instrument. ${ }^{\mathrm{b}} \mathrm{D}$ etermined
 ${ }^{\mathrm{f}} 20.92\left(19-\mathrm{OCOCH}_{3}\right), 170.74\left(19-\mathrm{OCOCH}_{3}\right), 21.14\left(\mathrm{OCOCH}_{3}\right), 171.05\left(17-\mathrm{OCOCH}_{3}\right) .{ }^{\mathrm{g}} \mathrm{CD}_{3} \mathrm{COCD}_{3} .{ }^{\mathrm{h}} \mathrm{CD}_{3} \mathrm{OD} .{ }^{\mathrm{i}} 20.25\left(19-\mathrm{OCOCH}_{3}\right), 171.13$ $\left(19-\mathrm{OCOCH}_{3}\right), 21.14\left(17-\mathrm{OCOCH}_{3}\right), 171.08\left(17-\mathrm{OCOCH}_{3}\right) .{ }^{\mathrm{j}} 20.76$ (19-COM e), 169.93 ($19-\mathrm{COM} \mathrm{e}$). ${ }^{\mathrm{k}} 20.32$ ($19-\mathrm{COM} \mathrm{e}$), 170.70 ($19-\mathrm{COM} \mathrm{e}$). ${ }^{1, \mathrm{~m}} \mathrm{~N}$ umbers are interchangeable within the column.
that the 5-hydroxymethyl group is located at C-5 rather than $\mathrm{C}-10$, and that both the $\mathrm{C}-5$ and $\mathrm{C}-10$ stereochemistry is β.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 27a and 27b showed new signals consistent with the introduction of a double bond at C-1. NMR assignments for the 19unsubstituted compound 28, based on COSY and NOE measurements, were made for comparison.

A romatase inhibition

The 19(R/S)-substituted androstane-3,17-dione derivatives 2a, 3a/4, 27a and 27b did not show aromatase inhibitory activity. ${ }^{23}$ NM R measurements show that the A ring conformation of the saturated 19(R)- and 19(S)-alcohols 2a and 3a are in a 'boat' or
'twist' form, respectively. ${ }^{16}$ The location of the $19-\mathrm{H}$ would be most favourably located in the R-epimer for aromatase attack but may not be suitably located in either isomer.

Experimental

Reactions were monitored by TLC which was carried out in the following solvent systems on silica gel (M erck type 60H): acetone-light petroleum (bp 35-60 ${ }^{\circ} \mathrm{C}$) (LP), diethyl ether-LP, ethyl acetate-LP; compounds were visualized by dipping the plates in 5% sulfuric acid-ethanol followed by heating on a hot-plate at $\sim 120^{\circ} \mathrm{C}$. F lash column chromatography (FCC) was carried out on silica gel (M erck type 60). A nhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$
was used as a drying agent for solvents during work-up of a reaction mixture. M elting points were determined on either an Electro-thermal or Kofler type hot-stage apparatus and are uncorrected. Elemental analyses were performed by Mr W. Baldeo, School of Pharmacy, U niversity of London, England.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in Tables 1 and 2. Survey spectra were recorded on a Bruker AM 300 instrument while two-dimensional and NOE spectra were recorded on a Bruker AM X 500 spectrometer. Samples were measured as ~ 50 $\mathrm{mmol} \mathrm{dm}{ }^{-3}$ solutions in $5-\mathrm{mm}$ sampletubes in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}(1: 1)$, or $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ as indicated in the Tables. For samples in CDCl_{3} the residual CHCl_{3} peak in the solvent ($\delta_{\mathrm{c}} 77.0 \mathrm{ppm}, \delta_{\mathrm{H}} 7.26 \mathrm{ppm}$) was used as the internal reference for both proton and carbon spectra. For the remaining solvents SiM_{4} was used as an internal reference. Sample temperature was controlled at 300 K for all spectra. Carbon spectra were classified as to multiplicity with the DEPT technique ${ }^{24}$

H omonuclear correlation (COSY), heteronuclear correlation (HSQC) and nuclear O verhauser effect (NOE) difference spectra were recorded as described previously. ${ }^{1}$

19-Formylandrost-4-ene-3,17-dione 1

19-H ydroxyandrost-4-ene-3,17-dione ($5.0 \mathrm{~g}, 16.4 \mathrm{mmol}$) and pyridinium dichromate ($10.0 \mathrm{~g}, 26.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 18 h . A fter dilution with diethyl ether ($100 \mathrm{~cm}^{3}$), the mixture was filtered through Celite to give, after work-up, a residue which on FCC on elution with 30% acetone-LP, gave the aldehyde $1(3.0 \mathrm{~g}$, 60%), mp $132-134{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (lit., ${ }^{25} 129-133^{\circ} \mathrm{C}$).
(19R)-19-H ydroxy-58,19-cycloandrostane-3,17-dione 2a, (19S)-19-hydrox y-5 β,19-cycloandrostane-3,17-dione 3a/(19S)-3-hydroxy-38,19-oxido-5 3,19 -cycloandrostan-17-one 4 and estra-5(10)-ene-3,17-dione 5a
Zn powder (40 g) was added to a solution of the aldehyde $\mathbf{1}$ $(8.00 \mathrm{~g}, 26.5 \mathrm{mmol})$ in 50% acetic acid ($160 \mathrm{~cm}^{3}$) and the mixture stirred for 1.5 h , after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($500 \mathrm{~cm}^{3}$) and filtered. The filtrate was washed with water and aqueous NaHCO_{3}, dried, concentrated ($\sim 15 \mathrm{~cm}^{3}$) and diluted with $\mathrm{Et}_{2} \mathrm{O}$ to give the 19(R)-alcohol $\mathbf{2 a}(5.00 \mathrm{~g}, 62.5 \%)$, mp 160$167^{\circ} \mathrm{C}$ which on recrystallization gave an analytically pure sample, mp $169-179^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 8.8 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$). A portion of the mother liquor (1 g) on FCC gave, on elution with $80 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$, estra-5(10)-3,17-dione 5a ($240 \mathrm{mg}, 3.3 \%$), mp $144-148{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (lit. ${ }^{26} 144-146^{\circ} \mathrm{C}$), the $19(\mathrm{R}$)alcohol $\mathbf{2 a}\left(130 \mathrm{mg}\right.$), $\mathrm{mp} 160-167^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) and the 19(S)-alcohol/hemiketal mixture $3 \mathrm{a} / 4$ ($45 \mathrm{mg}, 0.56 \%$), mp $160-165{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 8.7$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ required: $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$). The wide mp range observed results from the thermal instability of the cyclopropanols.
(19R)-19-H ydroxy-5 β, 19-cycloandrostane-3,17-dione acetate 2b To the 19(R)-alcohol 2a ($200 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 cm^{3}) was added 4-dimethylaminopyridine (DMAP) (50 mg) and $\mathrm{Ac}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ after which the mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h . A fter dilution with water ($10 \mathrm{~cm}^{3}$), the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract washed with saturated aqueous NaHCO_{3} and water to give, on work-up, the 19(R)acetate $\mathbf{2 b}$ ($100 \mathrm{mg}, 44 \%$), $\mathrm{mp} 180-183^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 73.0 ; \mathrm{H}, 8.5 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 8.2 \%$).
(19R)-19-T rimethylsiloxy-5 $\boldsymbol{\beta}$,19-cycloandrostane-3,17-dione 2 c To a solution of the $19(\mathrm{R})$-alcohol 2 a ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added 1.0 m 1 -(trimethylsilyl) imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 2 h . It was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water to give, on work-up, the trimethylsilyl
ether $\mathbf{2 c}(74 \mathrm{mg}, 40 \%), \mathrm{mp} \mathrm{96-98}{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}\right)$ (Found: C , 70.6; $\mathrm{H}, 9.2 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 9.15 \%$).

(19S)-19-H ydroxy-5 $\mathbf{3}, 19-$ cycloandrostane-3,17-dione 3a/ hemiketal 4 from the dione $2 a$

Epimerization in KOH-MeOH. The 19(R)-alcohol 2a (150 $\mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved by stirring in 0.5 m metanolic $\mathrm{KOH}\left(10 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 1 h . A fter dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80 cm^{3}) the mixture was washed with water and worked up to give the 19(S)-alcohol/hemiketal mixture $3 \mathrm{a} / 4$ ($105 \mathrm{mg}, 70 \%$), mp $160-165^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).
Epimerization in HCI-THF. The 19(R)-alcohol 2a (150 mg , 0.50 mmol) was stirred in TH F ($15 \mathrm{~cm}^{3}$) containing 12 m aqueous $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 4 h . Work-up as above gave, after FCC, on elution with 20% acetone-LP the 19(S)-alcohol/ hemiketal mixture 3 a and 4 ($64 \mathrm{mg}, 42 \%$), mp $147-166^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).
(19S)-19-H ydroxy-5 3 ,19-cycloandrostane-3,17-dione acetate 3b To the 19(S)-alcohol/hemiketal mixture 3a/4 mixture (100 mg , 0.20 mmol) in pyridine ($1 \mathrm{~cm}^{3}$) was added DM AP (25 mg) and $\mathrm{Ac}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 1 h . A fter this, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water to give on FCC on elution with 25% acetone-LP the non-crystalline cyclopropanol acetate 3b ($80 \mathrm{mg}, 70 \%$).
(19S)-19-T rimethylsiloxy-5 β,19-cycloandrostane-3,17-dione 3c To the 19(S)-alcohol/hemiketal mixture $\mathbf{3 a} / 4$ ($75 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ in dimethylformamide (D M F) ($0.5 \mathrm{~cm}^{3}$) was added 1.0 m 1-(trimethylsilyl) imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.2 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 3 h . A fter dilution with $\mathrm{Et}_{2} \mathrm{O}$ the mixture was washed with water to give, on work-up, the silyl ether 3c (32 $\mathrm{mg}, 35 \%$), mp 122-125 ${ }^{\circ} \mathrm{C}$ (from Et $\mathrm{E}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, $70.55 ; \mathrm{H}$, 9.3. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ required: $\left.\mathrm{C}, 70.5 ; \mathrm{H}, 9.15 \%\right)$.
(19R)-19-H ydroxy-5ß,19-cycloandrostane-3,17-dione 2a, estr-$5(10)$-ene-3,17-dione $5 a, 17 \beta$-hydroxyestr-5(10)-en-3-one $5 b$ and (19R)-17 β, 19-dihydroxy-5 β,19-cycloandrostan-3-one 6a
A solution of the aldehyde $1(500 \mathrm{mg}, 1.66 \mathrm{mmol})$ in tetrahydrofuran ($25 \mathrm{~cm}^{3}$) was added over a period of 1 h to a stirred mixture of liquid ammonia ($100 \mathrm{~cm}^{3}$) and THF ($10 \mathrm{~cm}^{3}$) containing lithium metal ($681 \mathrm{mg}, 98 \mathrm{mmol}$). Stirring was continued for a further 30 min at which time $\mathrm{NH}_{4} \mathrm{Cl}(7.0 \mathrm{~g}, 130$ $\mathrm{mmol})$ was added to the mixture followed by $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$. Following evaporation of the ammonia the residue was washed with water and evaporated to provide a residue. This on FCC with $10-40 \%$ acetone-LP as eluent gave fractions which yielded the ketone $5 \mathrm{a}(50 \mathrm{mg}, 11 \%), \mathrm{mp} 147-149^{\circ} \mathrm{C}$ (from acetone-LP) (lit., ${ }^{26} 144-146^{\circ} \mathrm{C}$), the 17β-alcohol 5 b ($53 \mathrm{mg}, 12 \%$), mp 192$196^{\circ} \mathrm{C}$ (from acetone-EtOAc) (lit., ${ }^{27}$ 193-196 ${ }^{\circ} \mathrm{C}$), the 19(R)alcohol $2 \mathrm{a}(55 \mathrm{mg}, 11 \%), \mathrm{mp} 166-168{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and the 17ß,19(R)-diol 6a (173 mg, 34\%), mp 168-170 ${ }^{\circ} \mathrm{C}$ (from acetone-EtOA c).

(19R)-17ק,19-D ihydroxy-5 β,19-cycloandrostan-3-one diacetate 6b

The 19(R)-diol 6a ($153 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{Et}_{3} \mathrm{~N}\left(0.20 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(0.5 \mathrm{~cm}^{3}\right)$, at $20^{\circ} \mathrm{C}$ for 1 h after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. The organic layer was separated, washed with 3% aqueous HCl , water and aqueous NaHCO_{3} and worked up to give a residue which on FCC with 10% acetone-LP as eluent gave the 19(R)-diacetate 6 b ($130 \mathrm{mg}, 67 \%$), mp 139.5-142 ${ }^{\circ} \mathrm{C}$ (from EtOA c-LP) (Found: $\mathrm{C}, 70.9 ; \mathrm{H}, 8.3 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$).
(19R)-19-M ethoxy-5ß,19-cycloandrostane-3,17-dione 7, (19S)-19-methoxy-5 3 ,19-cycloandrostane-3,17-dione 8 (19S)-3-methoxy-3 $\beta, 19$-epoxy-5 $\beta, 19$-cycloandrostan-3-one $9,3,19,19$ -trimethoxy-3 $\beta, 5 \beta$-cycloandrostan-17-one 10
To a solution of the 19(R)-alcohol 2a ($360 \mathrm{mg}, 1.19 \mathrm{mmol}$) in
$\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$ cooled in an ice-water bath was added 12 m aqueous $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$. A fter the mixture had been allowed to come to $20^{\circ} \mathrm{C}$, it was stirred for 3 h , diluted with $\mathrm{Et} 2 \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ and washed with water. Work-up gave a residue which on FCC with $30 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ as eluent gave fractions (56 mg) which after two crystallizations from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ yielded the $3 \beta, 5 \beta$ cyclopropanol 10 ($14 \mathrm{mg}, 3 \%$), mp 104-106 ${ }^{\circ} \mathrm{C}$ (from Et $2 \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 73.0 ; \mathrm{H}, 9.6 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.9 ; \mathrm{H}, 9.45 \%$), the 3-methoxy ketal 9 ($107 \mathrm{mg}, 28 \%$), mp $220-223^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone-LP), the 19(R)-methyl ether 7 ($66 \mathrm{mg}, 18 \%$), $\mathrm{mp} 115-118{ }^{\circ} \mathrm{C}$ (from acetone-LP) or $\mathrm{mp} 199-203^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 75.85 ; \mathrm{H}, 8.9 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.9 ; \mathrm{H}$, 8.9%), and the 19(S)-methyl ether 8 ($104 \mathrm{mg}, 28 \%$), mp 147$149{ }^{\circ} \mathrm{C}$ (from acetone-LP).
(19S)-19-M ethoxy-5 $\beta, 19$-cycloandrostane-3,17-dione 8 and
(19S)-3-methoxy-3ß,19-epoxy-5 β,19-cycloandrostan-17-one 9 The 19(S)-alcohol/hemiketal mixture 3a/4 ($480 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to NaH (50% oil suspension; $96 \mathrm{mg}, 2 \mathrm{mmol}$) in benzene ($5 \mathrm{~cm}^{3}$) and DM F ($2.5 \mathrm{~cm}^{3}$) and the mixture stirred for 5 min at $20^{\circ} \mathrm{C}$. Iodomethane ($1.12 \mathrm{~g}, 8.0 \mathrm{mmol}$) was then added to the mixture and stirring continued at $20^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and worked up to give a residue which on FCC with 12% acetone-LP as eluent gave the 3-methoxyketal 9 ($223 \mathrm{mg}, 44 \%$), $\mathrm{mp} 224-226^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone-LP) (Found: $\mathrm{C}, 75.7$; $\mathrm{H}, 9.0 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.9 ; \mathrm{H}, 8.9 \%$), the 19(S)-methyl ether 8 ($90 \mathrm{mg}, 18 \%$), mp $150-151^{\circ} \mathrm{C}$ (from acetone-LP) (Found: $\mathrm{C}, 75.7 ; \mathrm{H}, 8.9, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.9 ; \mathrm{H}, 8.9 \%$); and starting material $3 \mathrm{a} / 4$ ($65 \mathrm{mg}, 13.5 \%$), mp $156-172^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).

(19S)-3-M ethoxy-3ß,19-epoxy-5ß,19-cycloandrostan-17-one 9 and (19S)-19-methoxy-4 α-methyl-5 1 ,19-cycloandrostane-3,17dione 11

To a stirred solution of the 19(R)-alcohol 2a ($300 \mathrm{mg}, 0.99$ mmol) in benzene ($5 \mathrm{~cm}^{3}$) and DMF ($5 \mathrm{~cm}^{3}$) was added iodomethane ($700 \mathrm{mg}, 5.0 \mathrm{mmol}$) followed by NaH (50% oil suspension; $250 \mathrm{mg}, 5.2 \mathrm{mmol}$) over 15 min . Stirring was continued at $20^{\circ} \mathrm{C}$ for 2 h , after which the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water to give, on work-up, a residue. This, on elution with 5-8\% acetone-LP gave the 3-methoxy ketal 9 ($105 \mathrm{mg}, 33 \%$), $\mathrm{mp} 220-224^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{LP}$) and the 4α-methyl derivative 11 ($67 \mathrm{mg}, 20 \%$), mp 133-135 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-LP) (Found: C, 76.1; $\mathrm{H}, 9.4 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.3$; H, 9.15\%).

19-Formyl-5 β-androstane-3,17-dione 12 and 19 -formyl-5 β -methyl-A-nor-5 β-androstane-3,17-dione 13

The 19(R)-alcohol 2 a ($300 \mathrm{mg}, 0.99 \mathrm{mmol}$) was heated to reflux with toluene p-sulfonic acid monohydrate ($90 \mathrm{mg}, 0.47 \mathrm{mmol}$) in benzene ($10 \mathrm{~cm}^{3}$) for 2 h after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. Work-up gave a residue which on FCC with $60 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ as eluent gave the A-norsteroid 13 ($48 \mathrm{mg}, 16 \%$), mp $145-150{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{LP}$) which was free of extraneous ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals but proved to be too unstable for further purification, and the 19 -formyl 5β -androstane-3,17-dione 12 ($153 \mathrm{mg}, 51 \%$), mp 139-142 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{LP}$) (Found: $\mathrm{C}, 75.6 ; \mathrm{H}, 8.85 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , 75.5; H, 8.7\%).

19-F ormyl-5 β-methyl-A-nor-5 β-androstane-3,17-dione 13 and 5β-methyl-17 β, 19-dihydroxy-A-nor-5 β-androstan-3-one 14

The 19(R)-alcohol 2a ($250 \mathrm{mg}, 0.83 \mathrm{mmol}$) was heated to reflux in 0.5 m methanolic $\mathrm{KOH}\left(20 \mathrm{~cm}^{3}\right)$ under argon for 3 h after which it was cooled to $20^{\circ} \mathrm{C}$, and treated with $\mathrm{NaBH}_{4}(600 \mathrm{mg}$, $16 \mathrm{mmol})$. The mixture was stirred for 30 min after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 3% aqueous HCl and water. Work-up gave a residue which on FCC with 30% acetone-LP as eluent gave the diol $\mathbf{1 4}$ ($143 \mathrm{mg}, 56 \%$), mp 195-
$197{ }^{\circ} \mathrm{C}$ (from acetone-LP) (Found: C, 74.3; $\mathrm{H}, 9.7 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%)$. In a separate reaction the A norsteroid 13 (57 mg from $150 \mathrm{mg}, 37 \%$), mp 147-153 ${ }^{\circ} \mathrm{C}$ (from acetone-LP) was separated by FCC with 15% acetone-LP as eluent but was not further purified.
(19R)-17ק,19-D ihydroxy-5 , 19-cycloandrostan-3-one 6a and (19R)-5 β, 19-cycloandrostane-3 $3,17 \beta, 19$-triol 15
LTBAH ($168 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added to a solution of the 19(R)-alcohol 2a ($200 \mathrm{mg}, 0.66 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) and the mixture stirred at $20^{\circ} \mathrm{C}$ for 14 h when TLC showed the presence of starting material and two products. A second portion of LTBAH ($168 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added to the mixture and stirring continued for a further 4 h when TLC showed the absence of starting material. The mixture was then diluted with EtOAc ($100 \mathrm{~cm}^{3}$) and the organic layer separated, washed with 5% aqueous HCl and water, dried and evaporated to give a residue This on FCC with $2.5 \% \mathrm{M} \mathrm{eOH}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the diolone 6 a ($89 \mathrm{mg}, 44 \%$), $\mathrm{mp} 165-$ $168^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 72.9 ; \mathrm{H}, ~ 9.3$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.9 ; \mathrm{H}, 9.65 \%$) and the $19(\mathrm{R})$ triol 15 ($71 \mathrm{mg}, 35 \%$), mp $147-152^{\circ} \mathrm{C}$ (from acetone-LP) (Found: C, 70.1; $\mathrm{H}, 9.9 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}$, 9.9\%).

(19R)-C ycloandrostane-3ß,17ק,19-triol 15

The 19(R)-alcohol 2a ($450 \mathrm{mg}, 1.49 \mathrm{mmol}$) in methanol (25 cm^{3}) was treated with $\mathrm{NaBH}_{4}(125 \mathrm{mg}, 3.3 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$ for 30 min after which the mixture was diluted with EtOAC (80 cm^{3}), washed with water and concentrated at $<40^{\circ} \mathrm{C}$ to ca .10 cm^{3} to give a residue. This afforded the 19(R)-triol $\mathbf{1 5}$ (307 mg , 68%), mp $147-152^{\circ} \mathrm{C}$ (from acetone-LP).
(19S)-17,19-D ihydroxy-5 5 ,19-cycloandrostan-3-one 16a/(19S)-3-hydroxy-3ß,19-epoxy-5 $\beta, 19$-cycloandrostan-17-one 17
LTBAH ($340 \mathrm{mg}, 1.34 \mathrm{mmol}$) was added to a solution of the 19(S)-alcohol/hemiketal $3 \mathrm{a} / 4(200 \mathrm{mg}, 0.66 \mathrm{mmol})$ in THF (20 cm^{3}) and the mixture stirred at $20^{\circ} \mathrm{C}$ for 14 h when TLC showed the presence of one new component. Work-up was as described for compound 6a. The EtOA c extract was concentrated under reduced pressure at $<40^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$ to give the 19(S)-alcohol/hemiketal $16 \mathrm{a} / 17$ ($170 \mathrm{mg}, 42 \%$), $\mathrm{mp} 138-141^{\circ} \mathrm{C}$ (from acetone-LP) (Found: C, 72.7; H, 9.4. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.9 ; \mathrm{H}, 9.65 \%$).

(19S)-17ק,19-D ihydroxy-5ß,19-cycloandrostan-3-one diacetate 16b

The 19(S)-alcohol/hemiketal $16 \mathrm{a} / 17$ ($70 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in pyridine ($0.5 \mathrm{~cm}^{3}$) and treated with acetic anhydride ($0.5 \mathrm{~cm}^{3}$) for 18 h to give, after FCC with 8% acetone-LP as eluent, the diacetate $\mathbf{1 6 b}(44 \mathrm{mg}, 49 \%)$, mp 110$112{ }^{\circ} \mathrm{C}$ (from acetone-LP) (Found: $\mathrm{C}, 71.0 ; \mathrm{H}, 8.3 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$).

(19S)-C ycloandrostane-38,17ק,19-triol 18 and (19S)-cyclo-androstane-3a,17ק,19-triol 19

The 19(S)-alcohol/hemiketal 3a/4 ($270 \mathrm{mg}, 0.89 \mathrm{mmol}$) in methanol ($15 \mathrm{~cm}^{3}$) was treated with $\mathrm{NaBH}_{4}(75 \mathrm{mg}, 2.0 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$ for 30 min after which the mixture was diluted with EtOA $\left(80 \mathrm{~cm}^{3}\right)$ and washed with water. Work-up gave a residue which, in FCC with 30% acetone-LP as eluent, gave the 3β alcohol 18 ($172 \mathrm{mg}, 62 \%$), mp $165-169^{\circ} \mathrm{C}$ (from MeOH -acetone-L P) (Found: C, 72.5; $\mathrm{H}, 9.9 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, 72.4 ; H, 9.9\%) and the non-crystalline 3α-alcohol 19 (34 mg , 12%) which proved too unstable for further purification.

$3 \beta, 17 \beta$-D ihydroxy-5 α-androstan-19-al 20 and 5α-androstane-3/,17乃,19-triol 21

The 19(R)-triol 15 ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) was heated to reflux in 0.5 m methanolic $\mathrm{KOH}\left(10 \mathrm{~cm}^{3}\right)$ under argon for 24 h . A fter
cooling to $20^{\circ} \mathrm{C}$ the mixture was treated with $\mathrm{NaBH}_{4}(200 \mathrm{mg}$, 5.3 mmol) and stirred for 30 min . It was then diluted with ethyl acetate and washed with water to give, after FCC with 7.5% $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent, the triol 21 ($73 \mathrm{mg}, 48 \%$), mp 227$232{ }^{\circ} \mathrm{C}$ (from MeOH -acetone-LP) (lit., ${ }^{10}$ 233-234 ${ }^{\circ} \mathrm{C}$ from acetone). In a separate reaction as above the aldehyde $\mathbf{2 0}$ (40 mg from $100 \mathrm{mg}, 40 \%$), mp $163-167^{\circ} \mathrm{C}$ (from acetone-LP) was isolated by FCC with 30% acetone-LP as eluent but proved to be too unstable for further purification.

$3 \beta, 17 \beta$-D ihydroxy-5 β-androstan-19-al 22 and 5β-androstane3 $\beta, 17 \beta$,19-triol 23

The 19(R)-triol 15 ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) was stirred with THF ($15 \mathrm{~cm}^{3}$) containing 12 m aqueous $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ at $25^{\circ} \mathrm{C}$ for 24 h after which the mixture was diluted with EtOAc ($100 \mathrm{~cm}^{3}$), washed with water, and evaporated under reduced pressure at $40^{\circ} \mathrm{C}$. The residue was taken up in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{NaBH}_{4}(200 \mathrm{mg}, 5.29 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ for 30 min . EtOAc $\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then washed with water. Work-up provided a residue which on FCC with $7.5 \% \mathrm{M} \mathrm{eOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent, gave the triol 23 ($26 \mathrm{mg}, 25 \%$), $\mathrm{mp} 220-221^{\circ} \mathrm{C}$ from (M eOH -acetone-LP) or mp $220-221.5^{\circ} \mathrm{C}$ (from EtOA c) [lit., ${ }^{11} 230-232^{\circ} \mathrm{C}$ (from EtOA C)]. Because of the mp difference elemental analysis was carried out (Found: C, 73.7; $\mathrm{H}, 10.3 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.0$; $\mathrm{H}, 10.5 \%$). In a separate reaction the aldehyde 22 (39 mg from $100 \mathrm{mg}, 39 \%$), mp $170-174^{\circ} \mathrm{C}$ (from acetone-LP) was obtained by FCC with 20% acetone-LP as eluent, but proved to be too unstable for further purification.

5 β-A ndrostane-3 $3,17 \beta, 19$-triol 23

The 19(S)-triol 18 ($150 \mathrm{mg}, 0.49 \mathrm{mmol}$) in THF ($15 \mathrm{~cm}^{3}$) containing 12 m aqueous $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ was set aside at $20^{\circ} \mathrm{C}$ for 49 h after which it was worked up as described for the preparation of compound $\mathbf{2 3}$ from the triol $\mathbf{1 5}$, to give a residue which was taken up in MeOH and treated with $\mathrm{NaBH}_{4}(200 \mathrm{mg}, 5.29$ $\mathrm{mmol})$. The mixture was stirred for 30 min and worked up to give the triol 23 ($69 \mathrm{mg}, 45 \%$), $\mathrm{mp} 220-221^{\circ} \mathrm{C}$ (from M eOH -acetone-LP).

5α-A ndrostane-3 $\beta, 17 \beta, 19$-triol 21 and 5β-hydroxymethyl-10 β -estrane-3ß,17 β-diol 25

The 19(S)-triol 18 ($150 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in 0.5 m methanolic $\mathrm{KOH}\left(10 \mathrm{~cm}^{3}\right)$ and the solution heated to reflux for 72 h ; it was then cooled to $20^{\circ} \mathrm{C}$ and treated with NaBH_{4} (200 $\mathrm{mg}, 5.3 \mathrm{mmol}$), the mixture being stirred for 30 min before dilution with EtOAc. A fter this, the mixture was washed with water to give on FCC with $7.5 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent the triol 25 ($22 \mathrm{mg}, 15 \%$), mp $194-195^{\circ} \mathrm{C}$ (from acetone-LP) (Found: $\mathrm{C}, 73.9 ; \mathrm{H}, 10.6 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 10.5 \%$) and the triol 21 ($45 \mathrm{mg}, 30 \%$), mp $227-231^{\circ} \mathrm{C}$ (from MeOH-acetone-LP).

(19R)-19-H ydroxy-5 3 ,19-cycloandrost-1-ene-3,17-dione 27a

The saturated dione 2b ($500 \mathrm{mg}, 1.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 cm^{3}) was added in portions over 5 min , to a stirred and cooled (acetone-solid CO_{2} bath) mixture of $\mathrm{Pri}_{2} \mathrm{EtN}(230 \mu \mathrm{l}, 1.9 \mathrm{mmol})$ and trimethylsilyl trifluoromethanesulfonate ($340 \mu \mathrm{l}, 0.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$, under Ar . A fter the mixture had been stirred for a further 1.5 h it was treated with $\mathrm{M} \mathrm{eOH}\left(0.5 \mathrm{~cm}^{3}\right)$ to destroy the excess of reagent and diluted with further ether. It was then washed with brine, dried and evaporated to give a residue which on FCC ($18 \% \mathrm{Et}_{2} \mathrm{O}-0.2 \% \mathrm{Et}_{3} \mathrm{~N}$ in LP) gave fractions of the 2- and 3-enol silyl ethers 26a (464 mg) (HC-2/4, $6: 1: 1) ; \delta\left(\mathrm{CDCl}_{3}\right) 4.66$ (ddd, J 6.1, 2.4, 2.4) and $5.30(\mathrm{~d}, \mathrm{~J} 2$, allylic coupling). $\mathrm{Pd}(\mathrm{OAc})_{2}(263 \mathrm{mg}, 1.17 \mathrm{mmol})$ in M CCN $\left(5 \mathrm{~cm}^{3}\right)$ was added to the enol mixture dissolved in MeCN $\left(30 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ and the solution stirred at $50^{\circ} \mathrm{C}$ for $5.5 \mathrm{~h} .{ }^{28}$ It was then evaporated under reduced pressure, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and treated with activated carbon. A fter the mixture had been
heated under reflux for 5 min , it was filtered through Celite and evaporated to give a residue which on FCC (5% acetone-LP) gave the unsaturated dione $27 \mathrm{a}(120 \mathrm{mg}, 24 \%), \mathrm{mp} 146-149{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 73.4 ; \mathrm{H}, 7.8 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C , 73.6; H , 7.65\%)
(19S)-19-H ydroxy-5 β,19-cycloandrost-1-ene-3,17-dione 27b Trimethylsilyl trifluoromethanesulfonate ($3.5 \mathrm{~cm}^{3}, 0.018 \mathrm{mmol}$) was added to a stirred solution of the saturated dione $\mathbf{3 b}$ (748 $\mathrm{mg}, 2.17 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(6 \mathrm{~cm}^{3}, 42 \mathrm{mmol}\right)$ in dry DM F cooled in an ice-bath. A fter 2 h the mixture was poured into $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer separated and washed with brine to give after FCC (8% EtOA c-LP) fractions ($462 \mathrm{mg}, 0.99 \mathrm{mmol}$) of the 2- and 3-enol silyl ethers 26b ($\mathrm{H}-2 / 4,2.3: 1$); $\delta\left(\mathrm{CDCl}_{3}\right) 3.70$ (s, $19-\mathrm{H}$ in 3 -enol) and 3.79 ($\mathrm{s}, 19-\mathrm{H}$ in 2 -enol). These fractions were dissolved in $\mathrm{MeCN}\left(30 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{Pd}(\mathrm{OAC})_{2}$ ($228 \mathrm{mg}, 1.02 \mathrm{mmol}$) at $40^{\circ} \mathrm{C}$ for 30 min and worked up as described for 27a to give the unsaturated dione 27b (238 mg , 32%), mp 203-205 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOA c) (Found: $\mathrm{C}, 73.65$; $\mathrm{H}, 7.9 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.65 \%$).

5 β,19-C ycloandrost-1-ene-3,17-dione 28

Treatment of 19 -hydroxyandrost-4-ene 3,17-dione (500 mg , 1.65 mmol) with diethyl(2-chloro-1,1,2-trifluoroethyl)amine as described by K nox et al. ${ }^{14}$ gave the 1 -ene, $\mathrm{mp} 184-186^{\circ} \mathrm{C}(120$ $\mathrm{mg}, 25 \%$) (lit., ${ }^{14} \mathrm{mp} 185-187^{\circ} \mathrm{C}$).

A cknowledgements

We thank the M edical Research Council of Canada for financial support. H. M ajgier-Baranowska has been a recipient for a Leslie F. Buggey G raduate Scholarship.

R eferences

1 J. F. Templeton, Y. Ling, W. Lin, R.J. Pitura and K. M arat, J. C hem. Soc., Perkin Trans. 1, 1994, 1149
2 J. F. Templeton, W. Lin, Y. Ling and K. M arat, Tetrahedron Lett., 1994, 35, 5755.
3 J. C. Orr, J. F. Templeton, H. M ajgier-Baranowska and K . M arat, J. Chem. Soc., Perkin Trans. 1, 1994, 2667.

4 L . Tin in Frontiers in Biotransformation, ed. K. Ruckpaul and H. Rein, A kademia Verlag, Berlin, 1992, vol. 6, pp. 1001-101.

5 H . Laurent and R. Weichert in Organic Reactions in Steroid C hemistry, ed. J. Fried and J. A. Edwards, Van N ostrand Reinhold Co., N ew York, 1972, vol. 2, pp. 110-113.
6 A. J. Birch and G. S. R. Subba R ao, J. C hem. Soc., 1965, 5139.
7 S. Rakhit and M. Gut, J. A m. Chem. Soc., 1964, 86, 1432.
8 J. J. Bonet, H. Werhli and K. Schaffner, H elv. Chim. A cta, 1962, 45, 2615.

9 J. Tadanier and W. Cole, Tetrahedron Lett., 1964, 1345.
10 L. H. K nox, E. Blossey, H. Carpio, L. Cervantes, P. Crabbe, E. Velarde and J. A . Edwards, J. Org. Chem., 1965, 30, 2198.

11 E. Santaniello and E. C aspi, J. Steroid Biochem., 1976, 7, 223.
12 R . L. D yer and T. A. H arrow, Steroids, 1979, 33, 617.
13 H. L. H olland and G. J. Taylor, C an. J. Chem., 1978, 56, 3121.
14 L. H. K nox, E. Velarde and A. D. Cross, J. Am. Chem. Soc., 1963, 85, 2533; L. H. K nox, E. Velarde, S. Berger, D. Cuadriello and A. D. Cross, Tetrahedron L ett., 1962, 1213.

15 P. Wieland and G. A nner, H elv. Chim. A cta, 1968, 51, 1932; P. Wieland and G. A nner, H elv. Chim. A cta, 1970, 53, 116.

16 K. M arat, J. F. Templeton, Y. Ling, W. Lin and R. K. G upta, M agn. R es. Chem., 1995, 33, 529.
17 E. Wenkert and E. K ariv, Chem. C ommun., 1965, 570; E. K ariv and E. Wenkert, I srael J. Chem., 1967, 5, 68.

18 W. Reusch, K. Grimm, J. E. K aroglan, J. M artin, K. P. Subrahamanian, Y. C. Toong, P. S. Venkataramani, J. D. Yordy and P. Zoutendam, J. Am. Chem. Soc., 1977, 99, 1953 and references therein.
19 N. H. Werstiuk, Tetrahedron, 1983, 39, 205.
20 W. Reusch, K. Grimm, J. E. K aroglan, J. M artin, K. P. Subrahamanian, P. S. Venkataramani and J. D. Yordy, J. Am. C hem. Soc., 1977, 99, 1958.
21 D. H. Gibson and C. H. DePuy, Chem. Rev., 1974, 74, 605.
22 J. W. Blunt and J. B. Stothers, Org. M agn. Res., 1977, 9, 439.

23 A. M. H. Brodie, W. C. Schwarzel, A. A. Shaikh and H. J. Brodie Endocrinology, 1977, 100, 1684; J. F. Templeton, Y. Ling, W. Lin, R. J. Pitura, H. M ajgier-Baranowska and A. M. H. Brodie, The IV International A romatase Conference, June 7-11, 1996 Tahoe City, Tahoe, California, U SA.
24 D. M. D oddrell, D. P. Pegg and M. T. Bendall, J. M agn. Reson. 1982, 48, 323
25 H. Hagiwara, S. N oguchi and M. Nishikawa, Chem. Pharm. Bull., 1960, 8, 84.

26 H. U eberwasser, K. H eusler, J. K alvoda, C. M eystre, P. Wieland,
G. A nner and A. Wettstein, H elv. Chim. Acta, 1963, 34, 343.

27 A. L. Wilds and N. A. N elson, J. A m. C hem. Soc., 1953, 75, 5366.
28 Y. Ito, T. H irao and T. Saeguse, J. Org. C hem., 1978, 43, 1011.
Paper 6/04405K
Received 25th J une 1996
A ccepted 5th M arch 1997

